"Chronic Lymphocytic Leukemia and Obinutuzumab Treatment"

Laura Fogliatto March, 2018.

Disclosures

- Investigator in Clinical Trials: Roche, Pfeizer, MSD, Novartis, Libbs, Celgene, Abbvie e Janssen
- Advisory Board: Roche, Abbvie and Novartis

Chronic Lymphocytic Leukemia

Best first line treatment for 95 years old patients

Adaptado de Tait Shanafelt. Hematology 2013:158-167.

NCCN CLL Treatment Landscape

Dol17n	Young/Fit	Elderly	Frail
Ibrutinib	FCR*	Obinutuzumab + Chlorambucil*	Obinutuzumab + Chlorambucil*
HDMP + Rituximab	Ibrutinib	Ibrutinib*	Ibrutinib*
Obinutuzumab	Bendamustine ± CD20 mAb	Rituximab +	Ofatumumab +
Alemtuzumab ± Rituximab	FR	Bendamustine ± CD20	Rituximab +
	HDMP + Rituximab	mAb	Chlorambucil
	PCR	Obinutuzumab	Obinutuzumab
		HDMP + Rituximab	HDMP + Rituximab
		Rituximab	Rituximab
		Chlorambucil	Chlorambucil
Ibrutinib	Ibrutinib*	Ibrut	inib*
Venetoclax ± Rituximab	Idelalisib + Rituximab*	Idelalisib +	Rituximab*
Idelalisib + Rituximab	Venetoclax + Rituximab	Venetoclax	+ Rituximab
Idelalisib	Idelalisib	Idela	alisib
HDMP + Rituximab	FCR	Reduced-	dose FCR
Lenalidomide ± Rituximab	FC + Ofatumumab	Reduced-dose PCR	
Alemtuzumab ± Rituximab	PCR	HDMP +	Rituximab
Ofatumumab	Bendamustine + Rituximab	Rituximab +	Chlorambucil
Preferred Regimen Rec * = Category 1	Other commended Regimen Wierda e	from NCCN v3.2018 t al. J Natl Compr Ca	anc Netw 2017;15(3):2

Clinical Trials for Unfit Patients

Immuno-chemotherapy

COMPLEMENT1

447 patients

Endpoint: PFS

EA≳3 most common: neutropenia (26%) – O-Chlb

Hillmen P et al. The Lancet Vol 385 May 9, 2015

COMPLEMENT1

Hillmen P et al. The Lancet Vol 385 May 9, 2015

(CLL11) Chlorambucil + Obinutuzumab: 781 patients

Goede V, et al. N Engl J Med 2014; 370:1101–1110;

Update CLL11: 40 months FUP

Progression Free Survival: G-Clb > R-Clb

Goede et al., Blood 2015, 126:1733 (ASH Annual Meeting Abstract)

CLL11: MRD AT THE END OF TREATMENT

MOLECULAR REMISSION RATE

Goede V, et al. N Engl J Med 2014; 370:1101–1110; Hallek M, et al. Blood 2008; 111:5446–5456. *DRM = Doença Residual Mínima

CLL11 : PROGRESSION FREE SURVIVAL AND NEGATIVE MRD

Goede V, et al. N Engl J Med 2014; 370:1101–1110; Supplemental appendix.

Adverse Events CLL11

CLL11 stage II: Grade ≥3 AEs

Incidence of grade \geq 3 AEs with G-Clb vs R-Clb was higher owing to increased grade \geq 3 IRRs

Patients, n (%)	R-Clb (n=321)	G-Clb (n=336)
Any grade ≥3 AE	186 (58)	239 (71)
IRRs	13(4)	67 (20)
Neutropenia	91 (28)	111 (33)
Infections	46 (14)	41(12)
Thrombocytopenia	10 (3)	35 (10)

- All grade ≥3 AEs occurring until the May 2013 clinical cut-off in ≥5% of patients are shown
- There were no deaths attributed to IRRs, neutropenia or thrombocytopenia. There were two deaths from infection in the R-Clb arm (both pneumonia) and two in the G-Clb arm (septic shock, pulmonary sepsis)

Five patients who were randomised to R-Clb received one infusion of GAZYVA in error and are included in the safety population for G-Clb and not R-Clb Patients who received no treatment are excluded from the safety population (G-Clb=2; R-Clb=4) AE, adverse event; Clb, chlorambucil; CLL, chronic lymphocytic leukaemia; G-Clb, GAZYVA + Clb; IRR, infusion-related reaction; R-Clb, MabThera + Clb

Cytokine release and IRR: CLL pts treated with Obinutuzumab

Freeman et al. Blood . 2015 Dec 10; 126(24): 2646-2649

CLL11 : MOST COMUM ADVERSE EVENT IS INFUSIONAL REACTION

Atention to the first cycle: IRR grades 3 and 4 \rightarrow Day 1

To reduce the IRR: pre-medication, debulking

R-Bendamustine

R- Benda, Untreated CLL, Phase II Trial, German Chronic Lymphocytic Leukemia Study Group

Rituximab 375 mg/m2 C1 Rituximab 500 mg/m2 C2-C 6

Benda **90** mg/m2 D1-2, C1-C6

6 cycles

117 patients fit and unfit

Primary endpoint: Overall response

R- Benda, Untreated CLL, Phase II Trial, German Chronic Lymphocytic Leukemia Study Group

- Median age 64 years (max 78 yrs)
- 1/4 population: 70 years or older
- 1/3 had a creatinine clearance ≤70 mL/min

R-Benda, efficacy

- ORR: 80%, CR 21%
- MRD in PB: 57.8%
- MRD in BM: 29.2%

R- Benda, Untreated CLL, Phase II Trial, German Chronic Lymphocytic Leukemia Study Group

- The most common adverse events were hematologic toxicities
- 1/4 was not able to complete the full six cycles
- 62.4% treatment was delayed between 1 and 28 days
- 1/2 decreased the dose due to hematologic toxicity
- 72,6 % used infectious prophylaxis
- 21,4% were treated with G-CSF

Oral Target Therapy

Ibrutinib

Resonate-2[™]

Burger et al. N Engl J Med 2015;373:2425-37 Tedeschhi et al. Blood 2017; 126:495;

Resonate-2 ™

- 269 pts enrolled
- Median age: 73 years (70% ≥70 years)
- Baseline characteristics were balanced between arms:
 - 69% had comorbidities at baseline including CIRS score >6, reduced creatinine clearance, or ECOG status of 2.

Burger et al. N Engl J Med 2015;373:2425-37 Tedeschhi et al. Blood 2017; 126:495;

Resonate-2^{™:} **3-year Follow up**

PFS

Tedeschhi et al. Blood 2017; 126:495;

Adverse Events: 3-year Follow up

Prevalence of Most Common* G\gtrsim3 AEs Over Time on Ibrutinib Arm

Adverse Event, n(%)	0-1Year (N=135)	1-2 Years (N=123)	2-3 Years (N=111)	3-4 Years (N=47)
Neutropenia	11 (8)	4 (3)	1 (1)	0
Pneumonia	7 (5)	3 (2)	4 (4)	0
Infections	23 (17)	9 (7)	10 (9)	0
Bleeding	4 (3)	4 (3)	1 (1)	0
Atrial Fibrillation	2 (1)	0	4 (4)	0
Hypertension	6 (4)	2 (2)	0	0
Thrombocytopenia	3 (2)	2 (2)	0	1 (2)
Diarrhea	5 (4)	0	1 (1)	0

*> 5 % of patients

Tedeschhi et al. Blood 2015 126:495

Long Term AE with Ibrutinib (Warning and Precautions)

• Hemorrhage:

- Major bleeding in up to 6% of patients, minor up to 50%
- At risk: use of antiplatelet or anticoagulant therapies
- Consider the benefit-risk of withholding Ibrutinib for at least 3 to 7 days pre- and postsurgery depending upon the type of surgery and the risk of bleeding.
- Infections 14% to 29% of patients.
- Cytopenias (Grades 3 or 4)
 - neutropenia (range, 13% to 29%),
 - thrombocytopenia (range, 5% to 17%),

https://www.imbruvica.com/prescribing-information

Long Term AE with Ibrutinib (Warning and Precautions)

Hypertension

• Hypertension (range, 6% to 17%), median time to onset of 4.6 months (range, 0.03 to 22 months).

Atrial Fibrillation

- Atrial fibrillation and atrial flutter (range, 6% to 9%)
- Pts at risk: hypertension, acute infections, and a previous history of atrial fibrillation.

https://www.imbruvica.com/prescribing-information

Cross-Trial

Ibrutinib vs Chemotherapy

IMMUNO-CHEMOTHERAPY

Phase III Trials (Fit and Unfit)

RESONATE-2

IBRUTINIB

FCR - CLL8 FCR - CLL10 BR- CLL10 G-Clb - CLL11 R-Cbl - CLL11 Ofa-Clb - COMPLEMENT1

Cross-Trial: Population

Unfit: * Fit: *

IL.	*	*	*	*	*	*	*
Population	RESONATE-2 Ibrutinib N=136	CLL10 BR N=279	CLL10 FCR N=282	CLL8 FCR N=408	CLL11 G-CLB N=333	CLL11 R-Clb N=330	COMPLEMENT-1 Ofa-Clb N= 221
Median age	73 (65-89)	61 (54-69)	62 (55-67)	61 (30-80)	74 (39-89)	73 (40-90)	69 (35-92)
Median CIRS	5	2	2	1	8	8	9
Unmutated IGHV	43%	68%	55%	63%	62%	61%	57%
Del(17p)	Excluded	Excluded	Excluded	7%	7%	7%	5%

Cross-Trial: Safety

_

Population	RESONATE- 2 Ibrutinib N=136	CLL8 FCR N=408	CLL10 BR N=279	CLL10 FCR N=282	CLL11 G-CLB N=333	CLL11 R-Clb N=330	COMPLEMENT-1 Ofa-Clb N= 221
Overall Grade≳3 AE	73%	76%	84%	94%	70%	55%	50%
Infection Grade≳3 ≲ 65 yrs > 65 yrs	25%	25%	27% 27% 25%	40% 36% 48%	12%	14%	9%
Anemia Grade≳3	9%	5%	10%	14%	4%	4%	5%
Neutropenia Grade≳3	12%	34%	59%	84%	33%	28%	26%
Thrombocytopenia Grade≳3	4%	7%	14%	22%	10%	3%	5%

*Median treatment duration was approximated using the median number and length of cycles; mean number of cycles reported for CLL8 FCR. **Grade 3-4 AEs reported for CLL8 FCR. *Data collected only for CLL10. * FCR N=193, BR N=171. *FCR N=86, BR N=107.

Cross-Trial: PFS

Cross-Trial: OS

*Shaded area represents 95% confidence interval for ibrutinib

How to treat a 95 years old patient?

Unfit / Frail Patient

Adaptado de ESMO (<u>http://www.esmo.org</u>, acessed in Feb 2018; NCCN (<u>www.nccn.org</u>, acessed in Feb 2018; Rev Bras Hematol Hemoter 2016;38:346-57

MRD based therapy

Conclusions

- Single continuous oral agents are effective and have low toxicity.
 - Problems: long term adverse events, high cost
- Chlb-obinutuzumab treatment: effective, many patients achieve MRD neg and stop treatment.
 - Problems: acute toxicity (IRR) and cytopenias
- Bendamustine is effective but associated with high rates of hematologic toxicity
- Phase III trials and long term follow up are necessary
- Recognizing patient's fitness and disease status is mandatory before chosing the treatment

Jain et al. Blood 2017 130:495 Stilgenbauer et al. Blood 2017 130:4309 Flinn et al. Blood 2017 130:430